Home > Academics > Academic Units > Faculty of Bio-Technology and Bio-Sciences (BTBS) > Biotechnology > Amit Kumar Das
Professor
Biotechnology
Structural Biology
Prof. Das’s laboratory employs integrated structural biology, combining X-ray crystallography, protein engineering, proteomics, biophysical and biochemical methods to decipher structures and molecular mechanism of important proteins of human pathogens like Mycobacterium tuberculosis and Staphylococcus aureus.
Structure based drug designing
M. tuberculosis is one of the deadliest pathogens known to mankind. Crystal structures of important mycobacterial FAS proteins like high molecular weight ketoacylreductase (HMwFabG), HadAB heterodimeric complex, Protein tyrosine phosphatases A (PtpA), and (3R)-hydroxyacyl-CoA dehydratase (HtdX) have been solved from this laboratory. The structures based inhibitor designing and characterization against PtpA, HMwFabG and HadAB complex showed promises.
Epitope mapping
Mycobacterial Proline-rich secretary antigen (Mtc28) and mammalian cell entry proteins (Mce) and staphylococcal super antigen like proteins (SSL) have importance in host-pathogen interaction and essential for pathogenesis. Crystal structure determination, protein engineering and nanoLC coupled MALDI TOF/TOF based proteomics approaches have been employed for epitope mapping which has implementation in diagnosis and vaccination.
Enzyme Promiscuity and evolution
Probing structural insight into the substrate specificity and road map of evolution are important to address the biochemical property and molecular mechanism of an enzyme. Crystal structures of glycolytic enzymes namely GAPDH, TIM, PGK and PGM are determined to investigate the key sites/residues for biological activity. Analysis of dual specific NADP/IMP phosphatase and promiscuous SaIMPase-II revealed the evolutionary role of active site proximal loops in substrate selection.
Our future efforts will focus on mycobacterial fatty acid metabolism and virulence-associated pathway. The projects will encompass the crystal structure determination and functional characterization of the related proteins towards understanding the mechanism of activity and structure based inhibitor design.
Structural and Functional Characterization of Mycobacterium Tuberculosis Beta-hydroxyacyl-ACP Dehydrataes and Monooxygenases for Understanding its Thiourea Mediated Mode of Inhibition DBT, NEW DELHI
Structural and Functional Characterization of Mycobacterium Tuberculosis Beta-hydroxyacyl-ACP Dehydrataes and Monooxygenases for Understanding its Thiourea Mediated Mode of Inhibition DBT, NEW DELHI
Structural and Functional Characterization of Two-Component NHEJ DNA Repair System of Mycobacterium Tuberculosis Science and Engineering Research Board (SERB)
Delineating the mechanism of anti-leishmanial activity of Tricyclic antidepressant Norclomipramine for drug repurposing studies DBT, NEW DELHI
Rashika Singh
Area of Research: Structural Biochemistry
Susmita Mondal
Area of Research: Nutraceuticals biotechnology
Abinaya B
Area of Research:
Tulika Das
Area of Research: Molecular Biology and Biophysics
Nandita Kedia
Area of Research: Molecular Virology
Shakilur Rahman
Area of Research: Structural Biochemistry
Rituparna Saha
Area of Research: Structural Biochemistry
Gourab Bhattacharje
Area of Research: Molecular dynamics and simulation of protein
Joydeep Baral
Area of Research: Structural biology and biochemistry
Satyajit Beura
Area of Research: Computational Biology
Moumita Shee
Area of Research: Hydrogel and its applications
Soumya Sarathi Ganguly
Area of Research: Biochemistry
Ayushi Saini
Area of Research: Biochemistry
Sachin Kumar
Area of Research: Biochemistry
Sourav Misra
Area of Research: Mechanistic studies of human RECQ1