Home > Academics > Academic Units > Departments > Chemical Engineering > Koustuv Ray
Assistant Professor Grade-II
Chemical Engineering
Heterogeneous Catalysis is an important research area for energy, environment and sustainability. Within this domain, first-principles density functional theory (DFT) calculations and, Molecular Dynamics (MD) simulations provide a detailed atomistic level understanding on the nature of active sites and elucidate mechanistic insights of a particular catalytic process. The active site is the heart of any heterogeneous catalyst. Such study essentially goes into characterizing the catalyst for their electronic structure which are crucial for understanding and improving of their performance in a particular process reaction. Moreover, this first-principles approach guide us to design materials at their nanoscale for potential application.
Apart from this, the catalyst materials are synthesized, experimentally characterized and tested for their performance. The results of the computational and experimental studies are integrated to obtain structure-activity and structure-property correlations. The ultimate goal is to develop catalysts with improved properties for desired process reaction by understanding these correlations.
Currently, research impetus is given to the following topics for the development of efficient heterogeneous catalyst.
I. Catalytic conversion of CO2 into value-added products
II. Dynamics of alloy formation in bimetallic catalysts
In addition, the following research topics are being explored.
1. Microkinetic Modelling on heterogeneously catalysed process reactions (cracking, hydrogenation)
2. Process development for Plastic waste to fuels and chemicals
3. Computational approach for mechanistic Investigation on Pyrolysis of Indian sub-bituminous coal
4. Accelerated search of heterogeneous catalysts via machine learning models
Thermodynamic equilibrium analysis on oxidative dehydrogenation of propane using CO2: Finding a suitable reactant ratio for propylene formation by Kumar G., Pattnaik A. , Sehgal S. , Ray K. , Pandey D. Journal of the Indian Chemical Society 97 1-5 (2020)
Oxidative dehydrogenation of propane over alumina supported vanadia catalyst Effect of carbon dioxide and secondary surface metal oxide additive by Sandupatla A. S., Ray K. , Thaosen P. , Sivananda C. , Deo G. Catalysis Today 354 176-182 (2019)
Developing descriptors for CO 2 methanation and CO 2 reforming of CH 4 over Al 2 O 3 supported Ni and low-cost Ni based alloy catalysts by Ray K., Bhardwaj R. , Singh B. , Deo G. Physical Chemistry Chemical Physics 20 15939-15950 (2018)
Promotion of unsupported nickel catalyst using iron for CO2 methanation by Pandey D., Ray K. , Bhardwaj R. , Bojja S. , Chary K. , Deo G. International Journal of Hydrogen Energy 43 4987-5000 (2018)
A potential descriptor for the CO2 hydrogenation to CH4 over Al2O3 supported Ni and Ni-based alloy catalysts by Ray K., Deo G. Applied Catalysis B: Environmental 218 525-537 (2017)
Reforming and cracking of CH4 over Al2O3 supported Ni, Ni-Fe and Ni-Co catalysts by Ray K., Sengupta S. , Deo G. Fuel Processing Technology 156 195-203 (2017)
Effects of modifying Ni/Al2O3 catalyst with cobalt on the reforming of CH4 with CO2 and cracking of CH4 reactions by Sengupta S., Ray K. , Deo G. International Journal of Hydrogen Energy 39 11462-11472 (2014)
Development of SiO2 Supported FE Catalyst for CO2 Methanation: A Combined Investigation using Drifts and DFT Science and Engineering Research Board (SERB)
Development of Efficient Catalyst using Transition Metals for CO2 Hydrogenation ISIRD, SRIC
Rahul Kumar
Area of Research: Experimental and Computational Heterogeneous Catalysis
Athira P
Area of Research: Experimental and Computational Heterogeneous Catalysis