The design of efficient, miniaturized and wideband antennas have a dominant role in modern wireless communication systems. While the antenna performance is severely and adversely affected with reduction in antenna size, realization of size-reduced and low-profile antennas which maintain their radiation performance or outperform traditional antenna designs are imperative in order to make most use of the available real estate in current wireless configurations. This assumes more significance from the fact that antennas systems typically demand the maximum space requirement in wireless integrated systems. This, combined with the rapidly growing need for increased bandwidth within a highly compact topology make contemporary antenna designs fundamentally different from traditional antenna structures. As such, research and development efforts have been increasingly focused on the design of multifunctional, compact and broadband antennas incorporating self-complementarity with stable radiation characteristics across their impedance bandwidths. Similarly, development of low-loss devices are crucial for successful operation at the Ka and Ku-bands and beyond. It might be mentioned that traditional technologies like the microstrip are prohibitively lossy at 20-30 GHz frequencies and beyond. The rectangular waveguide based designs, though satisfying the loss requirements, are comparatively bulky and difficult to effectively integrate with planar components. Keeping the above in view, the design and analysis of efficient modern systems will be addressed with particular emphasis on efficient, compact and broadband antennas and low-loss guided structures. Reconfigurable, wideband and conformal antennas for mobile and wireless communication and current antenna miniaturization techniques for the realization of sub-wavelength radiating structures would be discussed.

In addition, metamaterials and their role in the design of systems with enhanced performance would be addressed. These include the design and realization of metamaterials, the design of electrically small antennas based on metamaterials and miniaturization of radiating structures based on the zeroeth order resonance.

### KEY TOPICS TO BE ADDRESSED

- Basic electromagnetic theory
- Conformal Antennas
- Wideband Antennas
- Metamaterials & Antenna Miniaturization
- Antennas for mobile communication
- Radar and communication
- EMI/EMC
- Microwave components

### TENTATIVE SPEAKERS

- Prof. Ajay Chakrabarty, IIT Kharagpur
- Prof. Bratin Ghosh, IIT Kharagpur
- Prof. Binay Kumar Sarkar, IIT Kharagpur
- Prof. Amitabha Bhattacharya, IIT Kharagpur
- Prof. Ramesh Garg, IIT Kharagpur
- Prof. Akhilesh Mohan, IIT kharagpur
- Prof. Arijit De, IIT Kharagpur
- Prof. Kalyan Bandyopadhyay, IIT Kharagpur
- Prof. Mrinal Kanti Mandal, IIT Kharagpur

### Short term course on “Design & Analysis of Efficient Antennas for Wireless Communication”
May 25-30, 2015

Name:______________________________
Designation: _____________________________.
Sex (M/F): _______________________________
ORGANISATION: _________________________
Highest academic Qualification:______________
Address:_________________________________
________________________________________
Phone / Fax: _____________________________
Email (Compulsory):_________________________
Accommodation required Yes/No:_____________
Details of bank draft:  Amount Rs___________
Draft No. ____________ Dated:_______________
Issuing Bank:______________________________
Date:________________________ Signature
Place:________________________
Recommendation from the organization:________________________
Signature with seal of the Head of the Organization
How to reach campus at IIT Kharagpur:
Situated about 120 km west of Kolkata, Kharagpur can be reached in about 2 hrs. by train from Kolkata or 3 hrs. by car from Kolkata airport. Kharagpur is also connected by direct train services to most major cities of the country. The institute is about 10 minutes drive from the Kharagpur railway station. Private taxi, auto rickshaw or cycle rickshaw are readily available for transport from the station. The transport can also be arranged as per request on personal payment basis.

Accommodation & food:
Outstation participants would be provided single or shared accommodation at the Institute Guest Houses on self payment basis as per availability on prior request. The accommodation fees would be waived for teachers / students from TEQIP approved Colleges / Institutions / Universities. Course fees also include breakfast/lunch/dinner/snacks.

Eligibility for Participation:
Category - 1 (TEQIP Sponsored):
Teachers / students from TEQIP approved Colleges / Institutions / Universities. Participants should bring a letter of nomination from their Principal stating that they are being deputed for the course.

Category – 2 (Teachers/Students/Industry/Others):
B. E. / B. Tech. / AMIE / Diploma in Engineering and B. Sc. / M. Sc. or any higher qualification in relevant field.
Participants from the Industry or Govt. Organizations working in related fields are also eligible.

How to apply:
Interested persons may apply in the form given herewith alongwith the registration fee in the form of demand draft drawn in favour of ‘CEP-STC, IIT Kharagpur’, payable at Kharagpur. The application should be sent to the mailing address of the Course Coordinator latest by May 15th, 2015. Teachers/students of colleges under TEQIP should send the completed registration form together with the letter of nomination from their organization. The total number of seats for the course is restricted to 50 including 30 seats for TEQIP colleges and 20 for other candidates. In view of the limited seats, selection will be made on first come first serve basis.

Course fee:
Category-1:
Course fees would be waived for teachers / students from TEQIP approved Colleges / Institutions / Universities.

Category-2:
Course fees for Teachers/Students/Others: Rs. 15000.00
Course fees for Industry: Rs. 25000.00

Certificate
A certificate of participation would be issued to all the participants from the Office of “Dean, Continuing Education, IIT Kharagpur”.

Course fee includes lecture notes and refreshments.