IITKGP

Research Areas

  • NanoPhotonics
  • Plasmonics
  • Disease detection using Light
  • BioPhotonics
  • Optical Biosensing
My research centres on creating plasmonic and photonic nanostructures (metamaterials) and realizing their interactions with organic, biochemical and semiconductor compounds. Metamaterials are artificially engineered materials that exhibit extraordinary electromagnetic properties not readily available in nature ‒ such as negative refractive index and artificial magnetism. I utilise the unique properties of metamaterials for energy, biomedical and sensing applications. I combine several nanofabrication processes and design ultrafast nano-spectroscopic characterization techniques to address these research. Focusing on these areas allows me to conduct interdisciplinary work at the interfaces of optics, material science, chemistry and biology. 

At present, my primary research goal is to develop a nano-spectrometer as an ultrafast diagnostic and imaging tool for biomedical applications and produce high resolution, label-free, chemical images of biological cells and protein nanoparticles. It will also be used to image and characterize the localised interactions between plasmonic nanostructures with other biochemical and organic compounds for their enhanced detection. Simultaneously, I want to create plasmon enhanced organic semiconductor (bulk heterojunction) based photovoltaics. Here, I will embed various light trapping plasmonic and photonic nanostructures at the active region of the photovoltaic device. Further, I will use my nano-spectrometer to produce chemical images of the interaction between plasmons and organic semiconductors and correlate the nanoscale phase separation with device performance in these photovoltaics.
 
My secondary research goal is to create a plasmonic-photonic hybrid, multi-parametric, highly sensitive, portable optical biosensor. By integrating micro-fluidic channels, this biosensor will be designed to allow direct analysis of body fluids for detecting common antigens and toxins, specific to a targeted pathology. The aim here is to produce a low-cost handheldlab-on-chip device that could be used for a “positive/negative” detection scheme. Thus, I conduct  cutting edge research in the field of nanophotonics to answer some of the fundamental questions about light-matter interaction, with a significant emphasis on Imaging, Sensing and Detecting.
    No Record Found.

Principal Investigator

  • Breaking Barriers in Fungal Sepsis Diagnosis and Antifungal Resistance Detection: Evaluating FTIR as a Cutting-edge Modality Indian Council of Medical Research (ICMR)
  • Emergent Phases in 2D Quantum Materials and Heterostructures Department of Science and Technology
  • Emergent Phases in 2D Quantum Materials and Heterostructures Department of Science and Technology
  • Emergent Phases in 2D Quantum Materials and Heterostructures Department of Science and Technology
  • Evaluation of FTIR as ultrafast and ultrasensitive modality for diagnosis of causative organisms in bacterial sepsis and detecting antimicrobial resistance INDIAN COUNCIL OF MEDICAL RESEARCH (ICMR)
  • Ultrafast Detection and Classification of various Mosquito borne diseases using Infrared Techniques aided by Machine Learning INDIAN COUNCIL OF MEDICAL RESEARCH (ICMR)
  • Ultrafast Detection and Quantitative Assessment of Dengue Fever Viral Load using Infrared Technologies INDIAN COUNCIL OF MEDICAL RESEARCH (ICMR)

Ph. D. Students

Anjali A R

Area of Research: Photonic wire waveguide and its applications

Anyesha Chakraborty

Area of Research: Two Dimensional Materials and their Application

Binita Boro

Area of Research: Solar cell

Pranab Jyoti Talukdar

Area of Research: Bio Nano Photonics

Raktim Bhattacharya

Area of Research: Photonic Instrumentation and Imaging

Shubhanshi Sharma

Area of Research: Metamaterials and Optical Phased Array Antenna

Souvik Das

Area of Research: Biophotonics